Yurt
12-03-2007, 06:21 PM
I had the luxery of sitting next to two train enthusiasts on Amtrak a summer ago. They were on their way to a train convention thingy in LA. At first I thought that these dudes were the biggest nerds I had ever seen/heard, however, after listening to them for a while, I thought they had good points, especially about high speed rails fixing congestion and possibly being better for the environment. In the end though, he told me he didn't think it would really take off in the US due to the cost. Europe and Japan rail are subsidized by the government and if the US rails were to succeed, the money necessary would substantial.
Super Trains: Plans to Fix U.S. Rail Could End Road & Sky Gridlock
With airports and highways more congested than ever, new steel-wheel and maglev lines that move millions in Europe and Japan have the potential to resurrect the age of American railroads.
Nestled between the seaside bluffs of Southern California’s Torrey Pines and the concrete arteries of Interstate 5 is the low-profile campus of General Atomics, home to the only magnetic levitation, or maglev, train in the United States. The company’s Electromagnetic Systems Division built the test track here three years ago, basing it in part on a design for a maglev rocket launch system developed by Lawrence Livermore National Laboratory.
General Atomics’ director of maglev systems, Sam Gurol, has promised me a rare ride on this prototype train, which is not really a train at all, but rather a single, open chassis with no seats. The track looks a little like the guideway to the Walt Disney World monorail in miniature—just 400 ft. long and raised 2 ft. to 5 ft. off the ground.
As I climb aboard the chassis, a researcher waves enthusiastically from a nearby control room like a parent sending his child on a first roller coaster ride. Gurol stands next to me. “Hold on,” he warns, and directs me to a single bar at the front of the vehicle. There’s a subwaylike jolt, a quiet rumble, and we’re off.
That scenario won’t come to pass for years, but commercial high-speed train travel is no mere fantasy. In other countries, “steel-wheel” bullet trains have been in operation since the 1960s. Japan’s Shinkansen sails along the 645-mile route between Tokyo and Fukuoka at up to 186 mph. In France, the high-speed TGV tops out at 199 mph on the 480-mile run between Paris and Marseille, which takes 3 hours. Within the U.S., Amtrak’s seven-year-old Acela Express can reach speeds of up to 150 mph, although the tight curves and dangerous roadway crossings of the Northeast Corridor route curtail its average speed to 86 mph. Magnetic levitation, the technology floating the test train at General Atomics, has a smaller commercial footprint, but it has the most impressive capabilities in the world of superspeedy trains. A maglev train that began service four years ago in Shanghai runs 20 miles between Pudong International Airport and the city’s business district in just 8 minutes at speeds of up to 267 mph. And this past September, the city of Munich, Germany, announced plans to build a new maglev line that will cover the 25-mile route between Franz Joseph Strauss International Airport and downtown in 10 minutes
click me (http://www.popularmechanics.com/technology/transportation/4232548.html)
I recommend clicking the linky, has cool video and pics.
Super Trains: Plans to Fix U.S. Rail Could End Road & Sky Gridlock
With airports and highways more congested than ever, new steel-wheel and maglev lines that move millions in Europe and Japan have the potential to resurrect the age of American railroads.
Nestled between the seaside bluffs of Southern California’s Torrey Pines and the concrete arteries of Interstate 5 is the low-profile campus of General Atomics, home to the only magnetic levitation, or maglev, train in the United States. The company’s Electromagnetic Systems Division built the test track here three years ago, basing it in part on a design for a maglev rocket launch system developed by Lawrence Livermore National Laboratory.
General Atomics’ director of maglev systems, Sam Gurol, has promised me a rare ride on this prototype train, which is not really a train at all, but rather a single, open chassis with no seats. The track looks a little like the guideway to the Walt Disney World monorail in miniature—just 400 ft. long and raised 2 ft. to 5 ft. off the ground.
As I climb aboard the chassis, a researcher waves enthusiastically from a nearby control room like a parent sending his child on a first roller coaster ride. Gurol stands next to me. “Hold on,” he warns, and directs me to a single bar at the front of the vehicle. There’s a subwaylike jolt, a quiet rumble, and we’re off.
That scenario won’t come to pass for years, but commercial high-speed train travel is no mere fantasy. In other countries, “steel-wheel” bullet trains have been in operation since the 1960s. Japan’s Shinkansen sails along the 645-mile route between Tokyo and Fukuoka at up to 186 mph. In France, the high-speed TGV tops out at 199 mph on the 480-mile run between Paris and Marseille, which takes 3 hours. Within the U.S., Amtrak’s seven-year-old Acela Express can reach speeds of up to 150 mph, although the tight curves and dangerous roadway crossings of the Northeast Corridor route curtail its average speed to 86 mph. Magnetic levitation, the technology floating the test train at General Atomics, has a smaller commercial footprint, but it has the most impressive capabilities in the world of superspeedy trains. A maglev train that began service four years ago in Shanghai runs 20 miles between Pudong International Airport and the city’s business district in just 8 minutes at speeds of up to 267 mph. And this past September, the city of Munich, Germany, announced plans to build a new maglev line that will cover the 25-mile route between Franz Joseph Strauss International Airport and downtown in 10 minutes
click me (http://www.popularmechanics.com/technology/transportation/4232548.html)
I recommend clicking the linky, has cool video and pics.